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working memory correlates with other 
cognitive functions like problem-solving12 
and fluid intelligence13, it is conceivable 
that noninvasive electrical stimulation 
interventions that enhance related brain 
dynamics could be generalized to these 
functions as well. These results, however, 
are far from demonstrating the efficacy of 
this approach in the clinic, and future steps 
should include optimization of stimulation 
and dose–response protocols to enhance 
duration, safety, and plasticity induction14. 
Implementation of properly powered, 
preregistered, hypothesis-driven multicenter 
protocols, together with data- and code-
sharing, will provide crucial information 
on reproducibility and could confirm and 
strengthen such proposals15.

The development of a clinically useful 
strategy to improve working memory in the 

elderly will likely require a long and laborious 
research process. Nevertheless, Reinhart 
and Nguyen4 identify a promising first step 
by successfully modulating frontotemporal 
neural dynamics to improve working 
memory performance in the elderly. ❐
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HISTORICAL NEWS & VIEWS: REPRODUCIBILITY

Double-dipping revisited
Robust conclusions require rigorous statistics. In 2009 a seminal paper described the dangers and prevalence of 
double-dipping in neuroscience. Ten years on, I consider progress toward statistical rigor in neuroimaging.

Katherine S. Button

The human mind struggles with 
probabilistic reasoning, tending 
instead toward mental-shortcuts that 

leave us prone to cognitive bias and logical 
fallacies. The scope for these errors increases 
with the complexity of the analytical 
pipeline, where decision is layered upon 
decision, assumption upon assumption. 
Circularity in analysis is a logical fallacy 
that occurs when the same data are used 
twice (or more) in the same analysis: once 
to select a subset of data of interest and 
again to test how interesting those same 
data are. Such double-dipping into the data 
violates the assumption of independence, 
undermining statistical inferences, inflating 
effect estimates and increasing the chance of 
false positive results. The dangers of double-
dipping in statistical analyses are well 
documented. Yet circularity is a seductive 
trap, beautifying results and feeding 
our confirmation bias. Methodological 
precautions can protect us from its allure, 
but how widely are they employed?

In 2009 Kriegeskorte and colleagues1 
examined 134 functional MRI (fMRI) 
articles published the year before in Nature, 
Nature Neuroscience, Science, Journal of 

Neuroscience and Neuron. They found that 
an astonishing 42% contained circular 
analyses, with the analyses of an additional 
14% of papers unclear. Circular analysis 
is not unique to fMRI, yet Kriegeskorte 
and colleagues’ findings shook the fMRI 
community to its core. I put this down to 
several reasons. First, their analysis provided 
a prevalence estimate that unequivocally 
demonstrated the ubiquity of this error even 
in the most prestigious publications. Second, 
their detailed examples of double-dipping in 
the context of fMRI and electrophysiology 
experiments provided a tangible way for 
readers to conceptualize the problem as 
directly applied to imaging research. That 
is, they made an abstract problem concrete. 
Third, and most importantly, they captured 
the zeitgeist.

During this time, the high prevalence of 
double-dipping in fMRI studies could be 
viewed as a symptom of the growing pains of 
a relatively young Big Data discipline and of 
the wider irreproducibility milieu bubbling 
away across the biomedical sciences2. 
Since its development as a technique in 
the early 1990s, fMRI saw two decades of 
near exponential growth, from around 350 

articles published in 1998 to over 2600 a 
decade later in 2008 (Fig. 1). At this point 
the field saw rapid developments in analytic 
methods and imaging procedures, moving 
from a diversity of locally developed analysis 
software to converge on the few open-source 
analysis packages widely used today3. The 
complexity and high-dimensionality of fMRI 
data coupled with the myriad analytical 
packages and pipelines raised a plethora 
of statistical conundrums. How best to 
preprocess the data, control for multiple 
comparisons or select regions of interest?

In 2005 John Ioannidis published his 
seminal paper, “Why most research findings 
are false”2, calling into question the reliability 
of findings across the biomedical sciences. 
He demonstrated that widespread use of 
shoddy research practices, such as reliance 
on underpowered studies, undisclosed 
flexibility in analyses and selective reporting 
of positive results, can lead to a worryingly 
high proportion of false positive results. 
2009 was a similar watershed year for the 
neuroimaging community. Alongside the 
‘double-dipping’ paper by Kriegeskorte et al.1 
and the ‘voodoo correlations’ paper by Vul et 
al.4, Bennett and colleagues5 published their 
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Ig Noble prize-winning demonstration of 
how poor control for multiple comparisons 
could lead to (false positive) evidence of 
neural activation in the brain of a dead 
salmon during a social perspective-taking 
task. The fMRI community embarked 
on a period of intense methodological 
introspection. Ten years on, how far have 
we come in making commonplace double-
dipping and related questionable research 
practices a thing of the past?

As suggested by Kriegeskorte et al., 
perhaps the simplest way to prevent circular 
analysis is to split one’s data into two 
independent samples, one for exploration 
and the other for confirmation. However, 
fMRI is expensive and sample sizes have 
been traditionally very small. While there is 
some evidence that sample sizes are on the 
rise, the average sample size in fMRI studies 
in 2015 was still only 19 participants3. 
Splitting a sample of this size is clearly 
problematic in terms of loss of statistical 
power6. Individual fMRI studies have instead 
tended to opt for retaining the full sample 
in a single confirmatory study (ostensibly, 
at least) and to use selection criteria that are 

demonstrably independent of the hypothesis 
test, such as using anatomical atlases or 
functional localizer tasks to define brain 
regions of interest.

Both have limitations; anatomical 
selection works well for small, clearly 
defined anatomical regions such as the 
amygdala but less well for large structures 
such as the medial prefrontal cortex. 
Functional localizers, where regions of 
interest are identified using a separate 
task thought to activate the same neural 
processes as those under investigation, 
are often preferred for larger anatomical 
areas. However, functional localizers are 
subject to several assumptions and suffer 
the same issues of signal-to-noise issues in 
small datasets as do the tests of hypothesis6. 
So how do you achieve separation of 
exploration and confirmation in a field that 
has been traditionally dominated by small, 
expense-constrained datasets? One answer 
is through better data-sharing, collaboration 
and data reporting.

Historically there has been little tradition 
of data-sharing in fMRI. Even the data 
in fMRI papers, presented in the form of 

peak voxel coordinates, were of limited use 
to other researchers wishing to replicate 
or build from an initial study’s finding, as 
they provide a poor summary of the vast 
amounts of data and analyses performed 
in the typical fMRI experiment. However 
recent years have seen a growing number of 
tools supporting open fMRI data-sharing, 
and their use is gaining in popularity. 
For example, the COINS service (http://
coins.mrn.org) currently hosts data on 
over 50,000 participants in 702 studies, 
and the NeuroVault repository (http://
neurovault.org) hosts over 1000 public 
collections. Neurosynth (http://neurosynth.
org) provides a data-synthesis service 
that summarizes available evidence from 
published peak voxel data, which is ideal for 
independently selecting regions of interest.

Recent years have also seen the 
development of successful neuroimaging 
consortia such as the ENIGMA (Enhancing 
Neuroimaging Genetics by Meta-analysis) 
consortium7 and the 1000 Functional 
Connectomes Project and its International 
Neuroimaging Data-sharing Initiative 
(INDI; http://fcon_1000.projects.nitrc.org/)8. 
These initiatives have paved the way for 
the creation of large datasets, such as The 
Human Connectome Project (http://www.
humanconnectomeproject.org/), the UK 
Biobank (http://imaging.ukbiobank.ac.uk/) 
and prospective cohort studies like IMAGEN 
(https://imagen-europe.com/about/project/), 
which are freely available to academic 
researchers. These datasets can be used 
either for exploratory hypothesis generation 
and independent selection criteria or for 
confirmatory replication, or both.

However, while a selection method 
that ensures independence, such as split 
and/or shared datasets, is necessary to 
prevent circular analysis, it is not sufficient. 
It must also be demonstrated that the 
selection method was chosen before data 
collection to ensure that a presumably 
independent selection criterion is not 
retrospectively applied after having seen 
a potentially interesting result. This is 
akin to hypothesizing after the results 
are known (HARKing), a similar form 
of circular thinking in which hypotheses 
are retrofitted to exploratory findings. 
Preregistration is widely recognized as the 
most powerful way of preventing HARKing 
and demonstrating that selection criteria are 
independent of subsequent analysis3,6,9. It 
involves registering the study with a detailed 
prespecification of the study design, primary 
outcome and analysis plan in advance of 
data-collection. In this way, confirmatory 
research testing a priori hypotheses (i.e., 
those made before data collection) are 
clearly differentiated from exploratory post 
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Fig. 1 | Number of fMri articles published per year from 1990 to 2018. The graph depicts exponential 
growth until 2014, after which growth flattens. The curve is overlaid with examples of key papers that 
signaled field-wide concerns about reliability of research findings, as well as key initiatives to address 
these concerns and promote reproducible science. This is not an exhaustive list, but it serves to illustrate 
the emergence of the key ingredients for reproducible science, such as platforms to support open data-
sharing, automatic evidence-synthesis of published results, and preregistration of study protocols, as 
well as the publication of standardized guidance for data-analysis and transparent reporting of methods 
and results. Widespread adoption of these practices could bring about a step-change in the reliability of 
fMRI findings, protecting against errors such as circular analysis and other related dubious practices that 
were common in 2008. Searches performed on 12 March 2019 on Web of Science ((Topic = (fMRI OR 
“functional Magnetic Resonance Imaging”)) AND DOCUMENT TYPES: (Article)).
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hoc analyses, which are used to generate 
hypotheses after the data are observed.

Preregistration has been standard 
practice in clinical trials many years10. 
However, despite its wide advocation3,6,9–11, 
preregistration has yet to gain traction within 
the neuroimaging community. In 2013 the 
Open Science Framework (http://osf.io/) 
provided a service to preregister studies 
across various fields of science, including 
neuroscience. Since then more than 28,500 
studies have been registered on OSF. Of 
these, only 102 relate to the search term 
‘fMRI’ (search date 21 March 2019). To put 
this into context, searching Web of Science 
found 26,068 fMRI articles published over 
the same period. By contrast, the field of 
‘eye-tracking’ research registered 328 studies 
on OSF and published 5,029 articles.

Transparent reporting of results and 
methods is the bedrock for reproducible 
science, yet historically, reporting standards 
in fMRI studies have been inconsistent12,13. 
To address this, the Organization for 
Human Brain Mapping (OHBM) convened 
a Committee on Best Practices in Data 
Analysis and Sharing (COBIDAS) in 2015–
2016, which issued a detailed set of reporting 
guidelines (http://www.humanbrainmapping.
org/COBIDAS)9. Relative to other reporting 
checklists such as those for clinical trials 
(http://www.equator-network.org/reporting-
guidelines/consort-abstracts), the COBIDAS 
MRI checklist is formidable. This reflects the 
length and complexity of analytic pipelines 
and the extent of information required for 

another researcher to be able to replicate an 
fMRI finding14.

By adopting stringent statistical criteria, 
independent replication, large collaborative 
consortia, complete reporting of statistical 
results and routine sharing of fine-grained 
statistical results, fields such as genetics 
have seen a step-change in their rate of 
scientific discovery15. Many hundreds more 
reproducible findings have been found in 
recent years, since whole-genome methods 
were developed, than were produced in 15 
years of small-scale candidate-gene studies. 
Similarly, clinical trials that have widespread 
adoption of preregistration and adherence 
to transparent reporting guidelines (at 
least in the top journals) have resulted in a 
flourishing field of evidence-synthesis, with 
high-quality systematic reviews and meta-
analyses that forms the basis of national and 
global healthcare policies.

So is double-dipping in fMRI research is 
a thing of the past? The pessimistic answer is 
no. A more optimistic answer is, not yet but 
it soon could be. Recent years have seen the 
technological ingredients for rigorous and 
reproducible functional brain imaging fall 
into place. Widespread adoption of practices 
such as preregistration for confirmatory 
analyses, adherence to recommended best-
practices in analysis and data-sharing, 
transparent reporting of results, large-scale  
collaboration and a cultural shift toward 
independent replication have the potential 
to bring about a step-change in the 
reproducibility of fMRI findings. With a 

shift in the reward structures to promote 
routine use of such rigorous methods over 
the next ten years, commonplace errors such 
as double-dipping may indeed become a 
thing of the past. ❐
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